Interop (.NET 1.1) Performance Guidelines - Marshaling

From Guidance Share
Jump to navigationJump to search

- J.D. Meier, Srinath Vasireddy, Ashish Babbar, and Alex Mackman


Explicitly Name the Target Method You Call

If you call a method and the CLR does not find an exact match, the CLR searches for a suitable match. This search slows performance. Be explicit with the name of the function you want to call. When you use the DllImport attribute, you can set the ExactSpelling attribute to true to prevent the CLR from searching for a different function name.


Use Blittable Types Where Possible

Instances of certain types are represented differently in managed code than they are in unmanaged code. These types are known as non-blittable types and require marshaling as they are passed back and forth between managed and unmanaged code. Instances of other types have the same in-memory representation in both managed code and unmanaged code. These types are known as blittable types and do not require conversion as they are passed back and forth. Therefore, the use of blittable parameter types in interop calls requires fewer processing cycles for types conversion than the use of non-blittable parameter types.

If you have the option of choosing what types will be used in an interface, use blittable types. For example, when you are designing interfaces for code that will be called through P/Invoke, try to use blittable data types, such as Byte, SByte, Int32, Int64, and IntPtr.

Tables 7.1 and 7.2 list commonly used blittable and non-blittable types.

Table 7.1: Blittable Types

SByte

Single

Double

Int16

Uint16

Int32

Uint32

Int64

Uint64

IntPtr

UintPtr

Formatted types containing only blittable types

Single-dimensional array of blittable types

Table 7.2: Non-Blittable Types

Char

String

Object

Boolean

Single-dimensional array of non-blittable types

Multi-dimensional array of non-blittable types


References

For more information about using blittable versus non-blittable types, see "Blittable and Non-Blittable Types" in the .NET Framework Developer's Guide on MSDN at http://msdn.microsoft.com/library/en-us/cpguide/html/cpconblittablenon-blittabletypes.asp.


Avoid Unicode to ANSI Conversions Where Possible

Converting strings from Unicode to ANSI and vice versa is an expensive operation. The CLR stores string characters in Unicode format. When you call functions in the Win32 API, you should call the Unicode version of the API (for example, GetModuleNameW) instead of the ANSI version (for example, GetModuleNameA).

When you cannot avoid Unicode to ANSI conversion, you may be able to use IJW and marshal strings manually by using the IntPtr type. For example, if you need to make several calls to a Win32 API function, you may not need to convert a string value between Unicode and ANSI with each call. IJW and manual marshaling allows you to convert the string once and then to make several calls with the string in the ANSI form.


Use IntPtr for Manual Marshaling

By declaring parameters and fields as IntPtr, you can boost performance, albeit at the expense of ease of use, type safety, and maintainability. Sometimes it is faster to perform manual marshaling by using methods available on the Marshal class rather than to rely on default interop marshaling. For example, if large arrays of strings need to be passed across an interop boundary, but the managed code needs only a few of those elements, you can declare the array as IntPtr and manually access only those few elements that are required.


Use [in] and [out] to Avoid Unnecessary Marshaling

Use the [in] and [out] attributes carefully to reduce unnecessary marshaling. The COM interop layer of the CLR uses default rules to decide if some parameter needs to be marshaled in before the call and out after the call. These rules are based on the level of indirection and type of the parameter. Some of these operations may not be necessary depending on the method's semantics.

Parameters that are passed by reference are marked as [in][out] and are marshaled in both directions. For example:


  instance string  marshal( bstr)  FormatNameByRef(
                                   [in][out] string&  marshal( bstr) First,
                                   [in][out] string&  marshal( bstr) Middle,
                                   [in][out] string&  marshal( bstr) Last) 

runtime managed internalcallIf you have control over the design of your COM components, modify the calling convention to marshal data only in the direction that it is needed.


Avoid Aggressive Pinning of Short-Lived Objects

Pinning short-lived objects unnecessarily extends the life of a memory buffer beyond the duration of the P/Invoke call. Pinning prevents the garbage collector from relocating the bytes of the object in the managed heap, or relocating the address of a managed delegate.

The garbage collector often relocates managed objects when it compacts the managed heap. Because the garbage collector cannot move any pinned object, the heap can quickly become fragmented, reducing the available memory.

There is often no need to explicitly pin objects. For example, there is no need to explicitly pin a managed array of primitive types, such as char and int, or to pin strings, StringBuilder objects, or delegate instances before making P/Invoke calls, because the P/Invoke marshaling layer ensures that they are pinned for the duration of the call.

It is acceptable to pin long-lived objects, which are ideally created during application initialization, because they are not moved relative to short-lived objects. It is costly to pin short-lived objects for a long period of time, because compacting occurs most in Generation 0 and the garbage collector cannot relocate pinned objects. This results in inefficient memory management that can adversely affect performance.


References

For more information, see "Copying and Pinning" in the .NET Framework Developer's Guide on MSDN at http://msdn.microsoft.com/library/en-us/cpguide/html/cpconcopyingpinning.asp.